Studies of ²³⁵U by Coulomb Excitation: High Spin. D.Ward¹,R.M.Diamond¹,R.M.Clark¹,M.Cromaz¹,M.A.Deleplanque¹, P.Fallon¹,A.Goergen¹,G.J.Lane²,I.Y.Lee¹, A.O.Macchiavelli¹, F.S.Stephens¹,C.E.Svensson³ and K.Vetter⁴ ¹ Nuclear Science Division, Lawrence Berkeley National Laboratory ² Department of Nuclear Physics, Australian National University, Canberra, Australia ³ University of Guelph, Guelph, Ontario, Canada. ⁴ Lawrence Livermore National Laboratory, Livermore. The spectroscopy of 235 U has hardly been extended since the work of Stephens et.al.[1]. Since techniques have been advanced considerably in the meantime, we decided to revisit this most important nucleus. A motivation for the original work was to identify, and to measure the properties of the $j_{15/2}$ multiplet with a view to performing a complete Coriolis analysis. This remained a motivation for the present work, and we were also interested in exciting the bands to higher spin. The first experiments were performed with Gammasphere and with beams of 86 Kr, and 136 Xe. However, the background from fusion reactions on light contaminants in the target proved unsurmountable. γ - γ coincidence techniques work poorly at low spins in 235 U; these states decay by one-step transitions to low-lying states of the ground band whose subsequent decays are largely converted. Fusion reactions with light contaminants in the target produce floods of high γ -ray-multiplicity cascades. Therefore, γ - γ coincidences make invisible the interesting transitions, whilst enhancing the background. In those experiments, even the high-spin states were obscured by background. The 8PI Spectrometer at the 88" Cyclotron had a superior performance in measuring the total energy H, and gamma-ray multiplicity K in association with γ - γ coincidences. With the 8PI Spectrometer the fusion background was greatly suppressed by gating on low H and K. The level scheme shown in Fig 1 was obtained in these experiments. Although we were not able to say anything new about the $j_{15/2}$ multiplet a remarkable feature of the data is the strong Coulomb excitation of positive-parity levels. Comparison with a standard Winther-DeBoer code in- dicated B(E3)-values of approximately 10-15 spu., which is surprisingly high for simple Nilsson states. Because the γ -coincidence gating conditions made a quantitative analysis difficult, we have continued this aspect of the experiment in γ -ray singles as discussed in the companion report. Figure 1: Level scheme for ²³⁵U derived in this work. Band-heads were previously known. ## References [1] F.S.Stephens, M.D.Holtz, R.M.Diamond, and J.O.Newton. Nucl Phys. A115 (1968) 129.